1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
// Copyright 2006 The Android Open Source Project
// Copyright 2020 Yevhenii Reizner
//
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use crate::scalar::Scalar;
#[cfg(all(not(feature = "std"), feature = "no-std-float"))]
use crate::NoStdFloat;
pub(crate) const FLOAT_PI: f32 = 3.14159265;
const MAX_I32_FITS_IN_F32: f32 = 2147483520.0;
const MIN_I32_FITS_IN_F32: f32 = -MAX_I32_FITS_IN_F32;
// TODO: is there an std alternative?
/// Custom float to integer conversion routines.
pub trait SaturateCast<T>: Sized {
/// Return the closest integer for the given float.
fn saturate_from(n: T) -> Self;
}
impl SaturateCast<f32> for i32 {
/// Return the closest integer for the given float.
///
/// Returns MAX_I32_FITS_IN_F32 for NaN.
fn saturate_from(mut x: f32) -> Self {
x = if x < MAX_I32_FITS_IN_F32 { x } else { MAX_I32_FITS_IN_F32 };
x = if x > MIN_I32_FITS_IN_F32 { x } else { MIN_I32_FITS_IN_F32 };
x as i32
}
}
impl SaturateCast<f64> for i32 {
/// Return the closest integer for the given double.
///
/// Returns i32::MAX for NaN.
fn saturate_from(mut x: f64) -> Self {
x = if x < i32::MAX as f64 { x } else { i32::MAX as f64 };
x = if x > i32::MIN as f64 { x } else { i32::MIN as f64 };
x as i32
}
}
/// Custom float to integer rounding routines.
#[allow(missing_docs)]
pub trait SaturateRound<T>: SaturateCast<T> {
fn saturate_floor(n: T) -> Self;
fn saturate_ceil(n: T) -> Self;
fn saturate_round(n: T) -> Self;
}
impl SaturateRound<f32> for i32 {
fn saturate_floor(x: f32) -> Self {
Self::saturate_from(x.floor())
}
fn saturate_ceil(x: f32) -> Self {
Self::saturate_from(x.ceil())
}
fn saturate_round(x: f32) -> Self {
Self::saturate_from(x.floor() + 0.5)
}
}
/// Return the float as a 2s compliment int. Just to be used to compare floats
/// to each other or against positive float-bit-constants (like 0). This does
/// not return the int equivalent of the float, just something cheaper for
/// compares-only.
pub(crate) fn f32_as_2s_compliment(x: f32) -> i32 {
sign_bit_to_2s_compliment(bytemuck::cast(x))
}
/// Convert a sign-bit int (i.e. float interpreted as int) into a 2s compliement
/// int. This also converts -0 (0x80000000) to 0. Doing this to a float allows
/// it to be compared using normal C operators (<, <=, etc.)
fn sign_bit_to_2s_compliment(mut x: i32) -> i32 {
if x < 0 {
x &= 0x7FFFFFFF;
x = -x;
}
x
}
// f32 wrappers below were not part of Skia.
macro_rules! impl_debug_display {
($t:ident) => {
impl core::fmt::Debug for $t {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(f, "{}", self.get())
}
}
impl core::fmt::Display for $t {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(f, "{}", self.get())
}
}
};
}
/// A float that is known to be finite.
///
/// Unlike `f32`, implements `Ord`, `PartialOrd` and `Hash`.
#[derive(Copy, Clone, Default)]
#[repr(transparent)]
pub struct FiniteF32(f32);
impl FiniteF32 {
/// A predefined 0 value.
pub const FINITE_ZERO: FiniteF32 = FiniteF32(0.0);
/// A predefined 1 value.
pub const FINITE_ONE: FiniteF32 = FiniteF32(1.0);
/// Creates a finite f32 number.
///
/// Returns `None` for NaN and infinity.
pub fn new(n: f32) -> Option<Self> {
if n.is_finite() {
Some(FiniteF32(n))
} else {
None
}
}
/// Returns the value as a primitive type.
pub const fn get(&self) -> f32 {
self.0
}
}
impl Eq for FiniteF32 {}
impl PartialEq for FiniteF32 {
fn eq(&self, other: &Self) -> bool {
self.0 == other.0
}
}
impl Ord for FiniteF32 {
fn cmp(&self, other: &Self) -> core::cmp::Ordering {
if self.0 < other.0 {
core::cmp::Ordering::Less
} else if self.0 > other.0 {
core::cmp::Ordering::Greater
} else {
core::cmp::Ordering::Equal
}
}
}
impl PartialOrd for FiniteF32 {
fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
Some(self.cmp(other))
}
}
impl_debug_display!(FiniteF32);
/// An immutable `f32` in a 0..=1 range.
#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Default)]
#[repr(transparent)]
pub struct NormalizedF32(FiniteF32);
impl NormalizedF32 {
/// A NormalizedF32 value initialized with zero.
pub const ZERO: Self = NormalizedF32(FiniteF32(0.0));
/// A NormalizedF32 value initialized with one.
pub const ONE: Self = NormalizedF32(FiniteF32(1.0));
/// Creates a `NormalizedF32` if the given value is in a 0..=1 range.
pub fn new(n: f32) -> Option<Self> {
if n.is_finite() && n >= 0.0 && n <= 1.0 {
Some(NormalizedF32(FiniteF32(n)))
} else {
None
}
}
/// Creates a `NormalizedF32` from `u8`.
///
/// Where 0 is 0.0 and 255 is 1.0
pub fn from_u8(n: u8) -> Self {
NormalizedF32(FiniteF32(f32::from(n) / 255.0))
}
/// Creates a `NormalizedValue` clamping the given value to a 0..=1 range.
///
/// Returns zero in case of NaN or infinity.
pub fn new_bounded(n: f32) -> Self {
NormalizedF32(FiniteF32(n.bound(0.0, 1.0)))
}
/// Returns the value as a primitive type.
pub const fn get(self) -> f32 {
self.0.get()
}
/// Returns the value as a `FiniteF32`.
#[inline]
pub const fn get_finite(&self) -> FiniteF32 {
self.0
}
}
impl_debug_display!(NormalizedF32);
/// An immutable `f32` that is larger than 0 but less then 1.
#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Default, Debug)]
#[repr(transparent)]
pub struct NormalizedF32Exclusive(FiniteF32);
impl NormalizedF32Exclusive {
/// Just a random, valid number.
pub const ANY: Self = NormalizedF32Exclusive(FiniteF32(0.5));
/// A predefined 0.5 value.
pub const HALF: Self = NormalizedF32Exclusive(FiniteF32(0.5));
/// Creates a `NormalizedF32Exclusive`.
pub fn new(n: f32) -> Option<Self> {
if n > 0.0 && n < 1.0 {
// `n` is guarantee to be finite after the bounds check.
Some(NormalizedF32Exclusive(FiniteF32(n)))
} else {
None
}
}
/// Creates a `NormalizedF32Exclusive` clamping the given value.
///
/// Returns zero in case of NaN or infinity.
pub fn new_bounded(n: f32) -> Self {
let n = n.bound(core::f32::EPSILON, 1.0 - core::f32::EPSILON);
// `n` is guarantee to be finite after clamping.
debug_assert!(n.is_finite());
NormalizedF32Exclusive(FiniteF32(n))
}
/// Returns the value as a primitive type.
pub fn get(self) -> f32 {
self.0.get()
}
/// Returns the value as a `FiniteF32`.
pub fn to_normalized(self) -> NormalizedF32 {
// NormalizedF32 is (0,1), while NormalizedF32 is [0,1], so it will always fit.
NormalizedF32(self.0)
}
}
/// A float that is known to be > 0.
///
/// Doesn't support NonNull memory layout optimization like `std` types.
#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd)]
#[repr(transparent)]
pub struct NonZeroPositiveF32(FiniteF32);
impl NonZeroPositiveF32 {
/// Creates a new `NonZeroPositiveF32` if the given value is positive.
///
/// Returns `None` for NaN and infinity.
pub fn new(n: f32) -> Option<Self> {
if n.is_finite() && n > 0.0 {
Some(NonZeroPositiveF32(FiniteF32(n)))
} else {
None
}
}
/// Returns the value as a primitive type.
pub const fn get(&self) -> f32 {
self.0.get()
}
}
impl_debug_display!(NonZeroPositiveF32);